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LETTER TO THE EDITOR

Patterns under quantum confined Stark effect

L L Bonilla, V A Kochelap† and C A Velasco‡
Universidad Carlos III de Madrid, Escuela Politécnica Superior, Butarque 15, E-28911 Leganés,
Spain

Received 1 June 1998

Abstract. We have studied pattern formation under the quantum confined Stark effect and
found different patterns with complex structure of the electron and hole wave functions which
give rise to nonuniform dipolar patterns of the electric charge inside the quantum well layer.
The results obtained indicate spontaneous breaking of the transversal invariance, which can lead
to new optical effects and transport phenomena.

The quantum confined Stark effect (QCSE) [1] arises when a strong electric field is applied
to a quantum well (QW) heterostructure. This field affects the energies and wave functions
of electron and hole subbands, as well as exciton states. Because of the underlying physics,
the QCSE is highly sensitive to the photo-generation of electrons and holes. Electrons and
holes screen the applied field and produce considerable changes in the optical spectra near
the fundamental edge of absorption. These spectra become dependent on the concentration
of the electron–hole plasma, i.e., on the intensity of illumination. Moreover, if the spectrum
of the illuminating light is tuned into the region between exciton and interband absorption,
the QCSE becomes an example of the nonlinear electro-optical effect in its extreme form:
light absorption becomes bistable. For a given range of intensities of the incident light, both
a high absorption state with large plasma concentration and a low absorption state with low
plasma concentration can exist.

This kind of optical bistability is observed for different quantum structures: (i) multiple
quantum well structures placed inside the intrinsic region of a p–i–n diode connected to an
electric circuit with a series resistor [2–5] (SEEDs, i.e. self electro-optical effect devices),
(ii) similar structures with an open circuit [6, 7], (iii) multiple quantum well structures
placed between charged capacitor plates [8–10] and others [11]. There are two common
characteristics for these structures. Firstly, they all show bistable behaviour despite the
different character of the relaxation and the transport of electrons and holes. Secondly,
all of these structures are layered structures, i.e. extended in two directions, which are
perpendicular to the applied field and to the illumination. Thus ignoring carrier motion in the
directions perpendicular to the field, each point of the structure could be in either one of the
two possible stable states. On the other hand, carrier motion and diffusion on the transversal
directions couple the states at different points and eventually produce nonuniform patterns in
the electron–hole plasma, as reported recently in experimental [8–10] and theoretical [12]
papers. More precisely, these patterns consist of regions with different absorption and
electron–hole concentrations of the quasi-neutral plasma, and different configurations of the
electrostatic field.
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Ukraine.
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Under the conventional QCSE in quantum wells, the quantized vertical motion of carriers
and their transversal motion are entirely uncoupled. The external field separates electrons
and holes and produces a homogeneous charge dipole layer inside the well. If patterns
are formed, the vertical and transversal degrees of freedom of the carriers becomestrongly
coupled. This leads to the appearance of a complex structure of wave functions and electric
charges inside the quantum well layer. In this letter we investigate this structure for different
patterns in detail.

Our approach is based upon the consideration of the widely separated characteristic
length scales involved in the problem. These include: the well width 2d, the transversal
electron wavelengthλdB , the screening length of the two-dimensional (2D) electron–hole
gas lsc, and the ambipolar diffusion lengthLD, which is expected to be the characteristic
length scale of the transversal patterns (LD =

√
D0τR, whereD0 is a diffusion coefficient

andτR is the plasma recombination time). For typical experimental conditions, the following
relations hold:

LD � λdB, lsc, d. (1)

This allows us to use the following approximations: (i) the total wave functions of the
carriers are factorized to the product of the wave functions of the vertical and transversal
motion, (ii) the transversal transport of carriers is quasi-classical, (iii) the wave functions
of the quantized vertical motion,ψe,ψh, and the subband energies,εe, εh, depend on the
transversal coordinates parametrically, and (iv) the redistribution of the electron and hole
concentrations is quasi-neutral,n ≈ p. For simplicity we also assume that the effective
masses of both electrons and holes are equal. The basic equations are: Schrödinger equation
for electron and hole wave functions in the Hartree approximation, Poisson equation for the
electrostatic potential, and drift–diffusion equations for the two-dimensional electron and
hole concentrations.

Let us apply an external electric field to a photoexcited single quantum well layer.
Introducing the characteristic energyE0 = h̄2/2md2, we will measure subband energies and
potential energy in units ofE0, and the electric field in units ofE0/ed. The dimensionless
electron and hole concentrations are in units ofε0E0/e

2d, ε0 being the permittivity of the
material. Letζ be the vertical coordinate in units ofd and r = (ξ, η) be the transversal
coordinates in unitsLD. Using equation (1) we can prove that the dimensionless electrostatic
energy can be presented asv(ξ, η, ζ ) = v0(ζ ; n)+ φ(r)+O(d/LD), with

v0(ζ ; n) = n
∫ 1

−1
dζ ′K(ζ, ζ ′)

∣∣ψe(ζ ′; n)∣∣2
K(ζ, ζ ′) ≡ 1

2
(|ζ − ζ ′| − |ζ + ζ ′|).

Here the electron concentrationn(r) andφ(r) are as yet unknown functions independent
of ζ which will be determined later. When the previous scaling and approximations are
introduced into the system of coupled Schrödinger–Poisson equations, the resulting problem
possesses the following symmetry properties:v(ζ ; n) = −v(−ζ ; n) and ψe(ζ ; n) =
ψh(−ζ ; n). This allows us to obtain wave functions and subbands from the following
Schr̈odinger equation:

d2ψ

dζ 2
+ (ε + v0− qζ )ψ = 0 (2)

ψ(±1) = 0
∫ 1

−1
|ψ(ζ ; n)|2 dζ = 1
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whereε andψ depend parametrically onn(r) andq is the dimensionless electric field. We
obtain for electrons and holesψe = ψ(ζ ; n), ψh = ψ(−ζ ; n), respectively. The subband
energies areεe(r) = −φ(r) + ε(n(r)) and εh(r) = φ(r) + ε(n(r)). The solutions of
equation (2) were found by means of a variational method. The energyε as a function of
the plasma densityn for a particular value of the electric fieldq is presented in figure 1. The
parameters used in the calculations are given in table 1. The increase in the electron and
hole energies with carrier concentration obviously arises from the screening of the applied
field.
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Figure 1. Renormalized energyε (scale on top of the figure) as a function of the plasma
concentrationn (left axis), and bistable characteristic curven(i): plasma concentration as
function of the incident light intensityi (left and bottom axis).

Table 1. Typical numerical values.

Parameter Value

E0 (meV) 5.6
E0 (kV cm−1) 5.6
N0 (cm−2) 4.0×1010

I0/h̄ω (photons cm−2 s−1) 8.1×1021

To determine the second contribution to the potential,φ, and the electron density,n,
we use the drift–diffusion equations written in dimensionless form as

1+ β
2β
∇r · [n∇r(φ − ε(n))− α(n)∇rn] = G −R. (3)
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−1+ β
2
∇r ·

[
p∇r(φ + ε(n))+ α(n)∇rp

] = G −R. (4)

Here β = µp/µn is the ratio between the hole and electron mobilities, and we have
chosen the diffusion coefficient in the ambipolar diffusion length,LD =

√
D0τR, so that

eD0 = 2βµn/(1+ β). In these equations, the carriers move on the plane due to the forces
±∇r(φ∓ ε(n)), for electrons and holes, respectively.µn,p are electron and hole mobilities.
The second term within the brackets is the diffusion contribution. Note that the potentials
v0 andφ generate forces acting on electrons and holes in different ways. In equations (3)
and (4), we have defined the functionα(n) = eDn,p/E0µn,p, which does not depend on
the type of carriers and can be easily found from the Einstein relation. The terms in the
right-hand side represent the rates of photo-generation and recombination of the carriers,
measured in units ofε0E0/e

2dτR.
In what follows, we restrict ourselves to patterns which depend on a single transversal

coordinate, let us sayξ . Subtracting (4) from (3) and using the conditionn ≈ p we obtain
for φ:

φ(n) = 1− β
1+ β

(∫ n α(n)dn

n
+ ε(n)

)
+ constant. (5)

Thus, oncen(ξ) is known, we can calculate the electrostatic potential in the QW,v(ζ ; n).
Now we shall specify the generation and recombination rates as:G−R = a(n, q, ω)i−n,

wherea(n, q, ω) is the dimensionless absorption factor in units of the maximum absorption
A0, i is the light intensity in unitsε0E0h̄ω/e

2τRA0d, andh̄ω the photon energy.
Generally, the bistable regimes arise if the absorption factora(n, q, ω) is a superlinear

function of the plasma concentration andG −R has several zeros at fixedq. Our general
results do not require specification ofα(n), but to obtain numerical results we follow [8–10]
and suppose that the absorption is due to exciton generation. These excitons are associated
with the two-dimensional electron and hole subbands. A fast exchange between the excitons
and the electron–hole states is supposed, so that we can characterize the system by the
electron and hole concentrations. In the case of deep QWs and a large exciton radius, the
exciton energyEex follows the positions of the electron and hole subbands. Assuming a
Lorentz shape of the absorption factor as function of the photon energy, we can write:

a(n, q, ω) = 32

(ε(n, q)−1)2+32
(6)

where1 = −(Eg − Eex − h̄ω)/2E0, is the detuning of the photon energy, and3 is the
dimensionless bandwidth in units 2E0. It is obvious that for the shape of the absorption (6),
the right-hand side of equations (3) and (4) can have more than one solution at a detuning
1(ω) > ε(0, q).

Now we can obtain the final ‘diffusion-like’ equation forn from equations (3)–(5)

− ∂

∂ξ

{
D(n, q)∂n

∂ξ

}
= a(n, q)i − n ≡ R(n, q, ω, i) (7)

where D is a function of the concentrationn and the electric fieldq: D(n, q) ≡
α(n) + n∂ε(n,q)

∂n
. It is important to notice that the ‘diffusion coefficient’D(n, q) is strictly

positive for alln > 0.
The conditionR(n, q, ω, i) = 0 gives transversally uniform solutions. It can be shown

that in equation (6) there are intervals of intensities and electric fields withthreebranches
of uniform solutionsn = n(i, q): low absorption branch (low concentrationnl(i)), high
absorption branch (high concentrationnh(i)) and the middle branch. The latter is unstable.
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Figure 2. Three basic types of pattern for infinite transversal extension of the QW layer.
Considering the phase portrait of equation (7); (a) corresponds to the homoclinic orbit when
il < i < ic, (b) corresponds to a heteroclinic orbit wheni = ic, and (c) corresponds to the
homoclinic orbit whenic < k < ih. Parameter values are shown in the body of the figure.

In figure 1 we present these branches calculated for particular parameters of table 1. The
bistable regime occurs in the intervalil < i < ih.

Nonuniform solutions of equation (7) can be found in an implicit form. A first integral
is

1

2
D2(n)

(
dn

dξ

)2

+ U(n, i) = C1 (8)

U(n, i) =
∫ n

nl

dn′ R(n′, i)D(n′).

Then the solutions are given by:

±
∫ n D(n′)dn′√

2(C1− U(n′, i))
= ξ + C2 (9)



L544 Letter to the Editor

��� �� � � ��
����
����
����
����
����
���
���
���
���
���
���

ξ

ζ

����
����
����
����
����
���
���
���
���
���
���

�D�

ζ

����
����
����
����
����
���
���
���
���
���
���

�F�

�E�

�D�

ζ

Figure 3. Distribution of the square of the electrons wave function|ψe|2 for the three basic
patterns portrayed in figure 2.

whereC1 andC2 are constants.
Let us suppose that the quantum well layer is infinite in theξ direction. Then possible

nonuniform solutionsn(ξ) should tend to the stable fixed pointsnl(i) or nh(i) asξ →±∞.
There are three types of such nonuniform solutions. To classify them we shall introduce a
critical value of the intensity,ic, which solves the equation

U(nh(ic), ic) = 0. (10)

The nonuniform solutions are homoclinic and heteroclinic orbits in the phase plane defined
by equation (7): (i)anti-soliton-like patterns having a single minimum and such that
n(ξ) → nh(i) as |ξ | → ∞ (if il < i < ic), (ii) kink-like patterns (if i = ic), and (iii)
soliton-likepatterns having a single maximum and such thatn(ξ)→ nl(i) as |ξ | → ∞ (if
ic < i < ih). These patterns are illustrated in figure 2. Besides these patterns, we found
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Figure 4. Electric charge distribution for the three basic patterns portrayed in figure 2.

an infinite number of periodic solutions. For a giveni, their amplitudes vary from zero to
(nh(i)− nl(i)).

Now we consider the three basic patterns listed above. In figure 3 we present density
plots of the square of the electron wave functions (|ψe|2) inside the quantum well layer
under these conditions. The breaking of the transversal translation symmetry can be seen
clearly: the carrier wave functions become dependent on the transversal coordinate and are
different for each pattern. The wave function distributions are symmetric with respect to
the centre of soliton and anti-soliton patterns, whilst the kink-like pattern has an asymmetric
wave function distribution. These wave function distributions are due to different screening
of the external field in different patterns. For example the field of the soliton-like pattern
is considerably screened in the central region by the excess of electrons and holes. There
the subband energiesεe, εh are higher (see figure 1) and the wave function becomes flatter
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and uniformly distributed across the quantum well layer (figure 3(c)). All these features
correspond to local partial suppression of the QCSE. In contrast, the QCSE is enhanced in
the central part of the anti-soliton pattern (figure 3(a)).

Figure 4 depicts the electric charge distributions

ρ(ξ, ζ ) = n(ξ) (|ψh(ζ |ξ)|2− |ψe(ζ |ξ)|2)
for the same basic patterns. The central horizontal line atζ = 0 separates half of the QW
layer with a negative charge (ζ > 0) from that with a positive charge (ζ < 0). Notice
that instead of a transversally uniform dipole layer we obtain a complex distribution of the
electric charge, which adopts the form of a nonuniform dipole layer inside the QW. In the
case of the soliton-like pattern (figure 4(c)), there is an excess of carriers in the central
region of the pattern. It is there that the dipole strength is maximal. For the anti-soliton
pattern (figure 4(a)), two symmetric regions depleted of electrons and holes appear in the
central part of the QW. Figure 4(b) shows the charge configuration in the transition region
between the states with high and low concentration of a kink-like pattern.

In conclusion, we have studied pattern formation under the QCSE, and found different
patterns with a complex structure, of the electron and hole wave functions and of the electric
charge inside the QW layer. The results obtained indicate the breaking of the transversal
invariance, which can lead to a set of new optical effects and transport phenomena. These
include changes in the selection rules for optical transitions, patterning of the transmitted
light intensity, anisotropy of the conductivity of two-dimensional electron–hole plasma, etc.

We are indebted to the Dirección General de Enseñanza Superior (Spanish Ministry of
Education) for sabbatical support (VAK) and for financial support through grant PB94-0375.
One of us (CAV) acknowledges the support of the Fundación General de la Universidad
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